Extensions 1→N→G→Q→1 with N=C90 and Q=C22

Direct product G=N×Q with N=C90 and Q=C22
dρLabelID
C22×C90360C2^2xC90360,50

Semidirect products G=N:Q with N=C90 and Q=C22
extensionφ:Q→Aut NdρLabelID
C90⋊C22 = C2×D5×D9φ: C22/C1C22 ⊆ Aut C90904+C90:C2^2360,45
C902C22 = C22×D45φ: C22/C2C2 ⊆ Aut C90180C90:2C2^2360,49
C903C22 = D9×C2×C10φ: C22/C2C2 ⊆ Aut C90180C90:3C2^2360,48
C904C22 = D5×C2×C18φ: C22/C2C2 ⊆ Aut C90180C90:4C2^2360,47

Non-split extensions G=N.Q with N=C90 and Q=C22
extensionφ:Q→Aut NdρLabelID
C90.1C22 = C45⋊Q8φ: C22/C1C22 ⊆ Aut C903604-C90.1C2^2360,7
C90.2C22 = D9×Dic5φ: C22/C1C22 ⊆ Aut C901804-C90.2C2^2360,8
C90.3C22 = D90.C2φ: C22/C1C22 ⊆ Aut C901804+C90.3C2^2360,9
C90.4C22 = C5⋊D36φ: C22/C1C22 ⊆ Aut C901804+C90.4C2^2360,10
C90.5C22 = D5×Dic9φ: C22/C1C22 ⊆ Aut C901804-C90.5C2^2360,11
C90.6C22 = C45⋊D4φ: C22/C1C22 ⊆ Aut C901804-C90.6C2^2360,12
C90.7C22 = C9⋊D20φ: C22/C1C22 ⊆ Aut C901804+C90.7C2^2360,13
C90.8C22 = Dic90φ: C22/C2C2 ⊆ Aut C903602-C90.8C2^2360,25
C90.9C22 = C4×D45φ: C22/C2C2 ⊆ Aut C901802C90.9C2^2360,26
C90.10C22 = D180φ: C22/C2C2 ⊆ Aut C901802+C90.10C2^2360,27
C90.11C22 = C2×Dic45φ: C22/C2C2 ⊆ Aut C90360C90.11C2^2360,28
C90.12C22 = C457D4φ: C22/C2C2 ⊆ Aut C901802C90.12C2^2360,29
C90.13C22 = C5×Dic18φ: C22/C2C2 ⊆ Aut C903602C90.13C2^2360,20
C90.14C22 = D9×C20φ: C22/C2C2 ⊆ Aut C901802C90.14C2^2360,21
C90.15C22 = C5×D36φ: C22/C2C2 ⊆ Aut C901802C90.15C2^2360,22
C90.16C22 = C10×Dic9φ: C22/C2C2 ⊆ Aut C90360C90.16C2^2360,23
C90.17C22 = C5×C9⋊D4φ: C22/C2C2 ⊆ Aut C901802C90.17C2^2360,24
C90.18C22 = C9×Dic10φ: C22/C2C2 ⊆ Aut C903602C90.18C2^2360,15
C90.19C22 = D5×C36φ: C22/C2C2 ⊆ Aut C901802C90.19C2^2360,16
C90.20C22 = C9×D20φ: C22/C2C2 ⊆ Aut C901802C90.20C2^2360,17
C90.21C22 = C18×Dic5φ: C22/C2C2 ⊆ Aut C90360C90.21C2^2360,18
C90.22C22 = C9×C5⋊D4φ: C22/C2C2 ⊆ Aut C901802C90.22C2^2360,19
C90.23C22 = D4×C45central extension (φ=1)1802C90.23C2^2360,31
C90.24C22 = Q8×C45central extension (φ=1)3602C90.24C2^2360,32

׿
×
𝔽